Survey of WWII remains at Findo Gask Airfield, Clathymore, Perth and Kinross

David Bowler

Background

Introduction

A & J Stephen (Builders) Ltd commissioned SUAT Ltd to undertake a survey of the surviving WWII airfield remains at Clathymore, in advance of residential redevelopment of the site. The airfield was known as Findo Gask, and is located on Clathymore Farm, at NO 0116 2129. The site lies on high, fairly level ground on the Gask Ridge, c 10 km to the W of Perth, c 5 km S of Methven, and c 1 km to the N of the well-known Gask Ridge Roman frontier (Woolliscroft 2002). The site has clear unobstructed views all around, especially WSW, dominated by Ben Vorlich, and ENE, up towards Strathmore. The present survey was given the project code MV02, (referring to the nearby village of Methven).

Aims and objectives

The purpose of the survey was to record the surviving airfield buildings and other features in advance of redevelopment.

Planning and curatorial issues

This survey was designed to satisfy the outstanding archaeological condition on the planning consent 02/01528/FUL for this development. Terms of Reference for the survey were issued by D L Strachan, the Perth and Kinross Area Archaeologist, on 6th June 2003. The tower is C-listed, and is to be retained. The farmhouse is still inhabited, and will be retained, and it is also intended to retain and convert the derelict steading.

Details of work

The site

Except for the farmhouse, the site was largely deserted and derelict. The airfield buildings were all vacant, though some had agricultural machinery and materials in them. The southern part of the site, where most of the buildings and hard standings are located, was otherwise occupied by concrete, rough grass, and areas of debris. The northern part, where the runways were, is now agricultural fields.

Survey method

A measured plan of the site and all visible remains had already been made by A & J Stephen. This was used as a base plan, and all the features on it were numbered and listed. The site was then visited by D P Bowler of SUAT, on 9th December 2003, and 5th, 6th, 9th, 11th, 12th, 13th February 2004. Some of these visits were less than a full day, due to bad weather or failing light. All the features were described, photographed and where appropriate, measured.

Extensive use was made of digital photography, with some 498 digital images being taken, listed and fully described, to record every feature that was capable of being photographed. Colour slide and monochrome film photographs were also taken of selected features. Many of the 66 features recorded were rather simple rectangular hut bases, or amorphous heaps of rubble. These were not measured, as they were already recorded on the base plan. Standing buildings were measured as required, using annotated sketch plans and sections, with dimensions taken by tape or hand-held laser measure as appropriate.

Particular attention was paid to details of build, and historical features. A very detailed record was made of the control tower, because of its complexity, rarity and historical interest.

During the course of the survey, a Desk Study by BAE Systems became available, which included annotated Air Ministry Plans of 1946 and 1948, showing and numbering many of the features recorded, and many subsequently lost. However, some of the numbers are very indistinct, and some of the descriptions rather enigmatic.

It was decided to retain the present numbering system and descriptions as a full record of what survived in February 2004, but to cross-refer to the 1946 and 1948 plans where they shed light on form and function. It was encouraging to see how often the present author’s conjectural interpretations were confirmed by the original records.

Historical background

This section is mainly based on information recorded by D J Smith (1983 and 1989), supplemented by the personal knowledge of the present author.

The Airfield at Clathymore was commissioned on 14th June 1941, and given the name of the parish in...
Illus 1 Site Location (Crown Copyright. Licence number 100034704)
Survey of WWII remains at Findo Gask Airfield, Clathymore, Perth and Kinross

which it lay, Findo Gask, with the code letters FG. It was provided with an unusual (and very substantial) three-storey control tower, based on the Fleet Air Arm standard design, also used at Heathrow among other places (Smith 1983, 104; 1989, 74). As will be seen below, there is clear evidence of changes to the design in the present tower.

It was originally intended as a Satellite Landing Ground (25 SLG) to the Maintenance Unit (44 MU) at Edzell in Angus (Smith 1983, 106; 1989, 179). SLGs were not operational stations, but provided aircraft storage and alternative landing facilities for other stations. Despite this, Findo Gask was given a type 1108/41 battle headquarters as if it were an operational station, rather than the type 3329/41 normally provided for SLGs and training stations (1989, 104). The Battle Headquarters was the strong point from which airfield defence would be co-ordinated if a station came under direct attack. On the 1946 Air Ministry Plan there is a small site designated 103 B.H.Q. some distance to the west of the present area of investigation.

Before completion, the airfield was re-allocated to Flight Training Command as a Relief Landing Ground for Tiger Moths from Perth (Scone) (Smith 1989, 179). The De Havilland Tiger Moth was (and is) a very famous biplane, used in the war by the RAF as a basic trainer. There was still a Tiger Moth tucked away in a hangar at Scone in the 1980s.

Findo Gask was soon reallocated as an SLG to 309 Squadron, because of the proximity of Polish Army Camps with which the unit carried out co-operation. The Squadron was initially based at Renfrew, and then at Dunino in Fife. However, on 25 November 1942, Findo Gask was raised to operational status when 309 Squadron moved its HQ here. 309 Squadron flew mainly Lysanders from Findo Gask. This was a single-engine army co-operation aircraft, best known for its role in dropping SOE agents in Nazi-occupied France. The squadron’s Mustang long-range fighter aircraft were mainly based elsewhere (Smith 1983, 106).

Findo Gask never had hard runways, but relied on Sommerfeld track, a kind of wire netting laid over grass, named after its Austrian emigré inventor, but also known as ‘Tin Lino’ (Smith 1983, 106; 1989, 147). This had the advantage of being cheap, easily repaired, and less easily seen from the air by the enemy, but the disadvantage of soon wearing out or sinking into the mud, especially on a wet site.

Problems with the surface caused the Squadron to move to Kirknewton on 6th March 1943, although the HQ staff returned when the Squadron was posted to Snailwell. In July, a flight of Austers from 652 Squadron came from nearby Methven for a brief stay (Smith 1983, 106). The Auster was a very light single-engine high-wing monoplane, used for reconnaissance and communication during the war, and afterwards had a long civilian career as a training and pleasure aircraft.

On 12th July 1943, the airfield passed to Flying Training Command, and became a satellite for the Pilot Advanced Flying Unit (9 (P)AFU) based at Errol in the Carse of Gowrie. From 28th March 1944, the Masters of C and D flight were based here (Smith 1983,
106). (The Miles Master was a single-engine low-wing monoplane used as an advanced trainer by the RAF at the time.)

On 12th September 1944, the training functions moved to Tealing in Angus, and the site was thereafter used by the Polish Army, and then by a maintenance unit (260 MU) for storage until 1948. Much later, Air Service Training at Perth (Scone) used the site for emergency landing practice. (Smith 1983, 106)

Although long derelict, the airfield and its tower remained in unofficial use as recently as 9th February 2004, certainly as landmark, and perhaps as a sort of dummy target. The modern Tucano trainer bore an uncanny resemblance to the Mustangs of 309 Squadron.

Airfield layout

The 1945 and 1948 Air Ministry Plans show that the airfield had three runways (strictly speaking six, as each could in theory be used in either direction depending on the wind). On the Air Ministry plans they are designated by a serial number, followed by the magnetic heading rounded to two digits in the conventional way. The longest, and by far the most important, ran WSW–ENE, with the lie of the land, and was designated No. 2 (25 Mag) or No. 5 (07 Mag). If flown westwards (25 Mag) it would gain maximum advantage from the prevailing westerly winds. Ben Vorlich would have made a very useful reference point for pilots, just a little to starboard of straight ahead. There were two shorter runways, one running almost exactly N–S (No. 1, 19 Mag or No. 4, 01 Mag), and the other running WNW–ESE (No. 3, 29 Mag or No 6, 11 Mag). The three runways crossed forming a large, slightly rotated letter A, with most of the station buildings fitting under the base of the A.

Summary description

Detailed records and photographs of the features were submitted to the Perth and Kinross HER and to the NMRS. What follows is a summary description of the more interesting features.

Many of the wartime buildings were of brick, all of a similar shape, size and pattern, but stamped with a variety of makers’ names, sometimes mixed in a single
building, and including Cannerton, Blairadam, Balgonie, Lochside and Cowdenbeath. These are mostly recognisable as Fife collieries, where a suitable clay was extracted as a by-product of coal mining (D W Hall pers comm.).

The major tracks

Track 43

The site as a whole was defined by a system of straight tracks which divide it into four quadrants. The most prominent was a wide concrete track, 43, running actually WSW–ENE, but for convenience treated as running notionally E–W, latterly divided by a post-and-wire fence along its centre line. Parts were still in use for site access, but parts are heavily overgrown with moss. This has sometimes been called a runway, but was too narrow, and rose to a marked hump at its eastern end (Crossing 44), which would have made for rather exciting landings. In fact, it was a perimeter track along the southern margin of the grass fields in which the runways were located. It would have been wide enough for aircraft to manoeuvre on the ground, and gave access to Hangar 12 and other work areas.

Crossing 44

For convenience, the intersection of Tracks 43, 45, 58, 60 was given its own number. It was paved with concrete like Track 43, and occupied a marked hump of high ground.

Track 45 + 60

This was a straight, narrow gravel track, linking the farm cottage to the S with the Farmhouse 61 and Steading 63 + 64 and Control Tower 65 in the N. This may predate the airfield, as it crossed the concrete Track 43 + 58 without deflection, and was wide enough only for vehicles.

Track 46

This gravel track runs along the S side of the site, bending slightly to the north at one point, and obviously served to provide vehicle access around the S side of the airfield complex.

Track 58

Track 58 was the eastward continuation of Perimeter Track 44, but at a slight angle, demonstrating that these tracks never served as runways.

Tracks 43, 45, 58 and 60 divide the site into four quadrants. Most of the buildings and features on the site are in the SW quadrant. The NW quadrant was mostly vacant, but contained the important Control Tower 65, Farmhouse 61, Corrugated Iron Hut 62, and Steading 63–4.

Illus 4 Lysander army co-operation aircraft in the RAF Museum, Hendon. This is the type operated by 309 Squadron from Findo Gask in 1942–3.
The SE quadrant contained a small number of features, and the NE quadrant was entirely vacant.

The south-west quadrant

The western block of this quadrant was much overgrown by grass, with a scattering of concrete hut bases, 1–7, oriented E–W, and all entirely reduced to ground level. In places the ground slopes gently down to the N, and some of the bases were raised on dwarf walls of brick to provide a level base. Fragments of cellular concrete suggest that most of these huts were built of this material. The bases were heavily overgrown with moss, and had obviously been demolished many years ago.

Hangar 12

This was the largest building on the site. Smith (1983, 105) notes that this was of type T2, and that it was re-clad sometime between 1974 and 1981. It was supported by 15 steel frames, made of channel-section rolled steel, bolted together, and covered with modern plastic-coated profiled steel cladding. The east and west ends consisted entirely of large sliding doors, consisting of six sections each. Each door panel was 6 m wide. Projecting overhead rails allowed the doors to open to full width. The hangar was surrounded by large concrete manoeuvring areas (8–11), accessed from Track 43.

Directly to the south of Hangar 12 were two large sections of concrete sewer pipe, lying on their side, and overgrown with moss. These may have been abandoned at any time, but they may originally have been used to construct some kind of fortification for airfield defence. This was often done at the time, and similar more recent constructions are still in use around the entrances to RAF Leuchars.

Shelters 19 and 20

These two blast shelters to the S of Hangar 12 were almost identical, except for a slight difference in the design of the spur walls protecting their entrances. Although much overgrown, they were in generally good condition, and were very well built in brick. It is clear that they had never been roofed, and could not be, because the central spine wall stood a full course higher than the surrounding walls. They were not intended to protect against a direct hit, and were really too small to be a deliberate target for bombing, but would protect against the blast effects of a near miss. They would also protect against strafing by gunfire, as the internal offset spine wall made it impossible to rake them from end to end.

They were designed to be cheap and simple to build, and easy to enter in a hurry from work areas nearby, so that personnel could continue with their normal tasks until it was absolutely certain that the airfield was about to be raided (Smith 1983, 18).
This group of three buildings was the only fully standing example of concrete huts at Clathymore. The N and S ranges (22a, 22c) were original, but the middle range (22b) was a modern steel agricultural structure, though perhaps on the site of an original hut. There were also traces of a possible transverse linking building at the E end of Hut 22c.

Huts 22 are shown on the Air Ministry Plan of 1946 as Building 6, Main Workshops. The N and S ranges are clearly visible on the plan, with narrow transverse N–S ranges at either end enclosing a courtyard where Range b now stands.

The original huts were built of cellular concrete (Smith 1983, 106), forming the walls and buttresses, with angle-iron roof trusses and asbestos cement roofs. Cellular concrete is a curious wartime 'austerity' material, apparently formed by washing small angular gravel in a cement slurry, then pouring it into shuttering, without any compaction or vibration, so that it sets with an open, 'cellular' texture, full of air spaces. This saves weight, material and cost, improves thermal insulation, perhaps inhibits rising damp, and just possibly inhibits the spread of cracks. The material is rather like very coarse peanut brittle. The structural properties are almost as good, slightly harder but perhaps not as tough, and the surviving huts were in poor condition.

In Huts 22, and in the demolished remains of most other huts, the inside surface had been rendered smooth, but the outside surface had received a curious 'applied scale' (my own term) render, formed by applying a batch of mortar with a float, and smoothing it with a single upwards movement. The result was a roughly trapezoidal patch of render, projecting out about 10 mm at the bottom, but flush with the wall at the top. The next batch was applied above this, and so on up the wall, until the whole wall was covered with overlapping trapezoidal scales of mortar, rather like wooden shingles, or the hung tiles seen on the walls of some buildings in Dorset, but much less regular.

The purpose of this finish is not clear. The scale pattern may help to shed rainwater, which would otherwise be a serious problem with cellular concrete, and this type of render would be very quick to apply, without the careful smoothing normally required. It may also have been a kind of camouflage, as it breaks up the big, smooth, flat, reflective surfaces of the huts, which would be very visible from the air, especially in moonlight. It might look a bit like rubble masonry from a (very long) distance, and therefore blend more easily with agricultural buildings.

The nearby Power House 37 also received this treatment, despite being made of brick, perhaps supporting the camouflage theory. The applied scale render had not adhered so well on brick, and many patches had fallen off.

The metal framed windows of Huts 22a and 22c were exactly 1 m wide and 1.5 m high. It is interesting to see a metric standard adopted so early in the UK, especially as other buildings at Clathymore seem to fit Imperial measurements. The use of cellular concrete of course frees the designers from traditional brick sizes, but it may be that the window frames were originally made for the export market, or even imported from the Continent before the War.

Huts 28

This complex of structures included the base of at least one cellular concrete hut with applied scale render, 28b. At the W end was a raised platform 28d, supported on cellular concrete dwarf walls with a smooth render. This had partly broken away to reveal the very coarse whinstone rubble packing supporting the concrete floor. Between 28b and 28d were ramps leading up to the platform from large flat areas, 28a and 28c. This was evidently some sort of loading bay and stores building, with hard standings for lorries on either side.

This group of structures is shown on the 1946 Air Ministry plan with an indistinct number, but is perhaps Building 30, SAA Store [Small Arms Ammunition Store]. This would be consistent with the features seen.

Refuelling point 30

This comprised a large concrete base, a smaller concrete and cast iron plinth, and just to the E, the top of a
large steel tank with traces of pipework. The gravel Track 31 was much overgrown, but would originally have been wide and solid enough for fuel tankers and other vehicles. Even if this tank had served aircraft rather than road vehicles, normal practice would be to use a tanker to carry fuel out to the aircraft on dispersal.

In fact it is shown on the 1946 Air Ministry Plan as Building 29, Bulk Petrol, (M.T.), [Motor Transport].

Hut Base 33

This large and complex structure incorporated a small hard standing to the north, a concrete base with a central well or pit, and a series of E–W dwarf walls, mainly of solid concrete, but one of single thickness brick. To the S of this was a low mound of rubble, grassed over. It is not clear if this building housed machinery requiring special foundations, or simply a suspended wooden floor for greater comfort. It is shown on the 1946 Air Ministry plan as Building 36, M.T. Shed and Offices [Motor Transport Shed etc], but this does not explain its curious construction.

Store 35

This small, solid brick building had a concrete slab roof, spur walls at the entrance, a wooden plank door, and a small vent in the back (N) wall. It was too low for a person to stand in, so perhaps served as a bomb-proof store for combustibles.

It is shown on the 1946 Air Ministry plan with an indistinct number, possibly Building 25, Pyro. Store [Pyrotechnics Store], for signal flares etc. This would readily explain its construction.

Power House 37

This large solid brick building had a concrete slab roof, coated with tar, and was protected with thick brick blast walls in front of all entrances. The north part consisted of two transformer rooms, with high access doorways. There were square pits in the floor of each, floored with sand. One room still had an instruction notice about the operation of the transformer.

The S part of the building was probably the generator room, as it had two parallel trenches in the concrete floor, filled with sand, with the marks of machine mountings on the trench edges. There were numerous ventilators in the walls, with covers of perforated asbestos cement sheet in two layers, sliding in a wooden frame. It appeared these were intended to allow adequate controlled ventilation, essential in an engine room, without compromising blackout.

The sand-filled pits were perhaps to absorb leakage of oil and fuel in case of damage, so as to minimise fire and other hazards. (The cooling oil used in large power transformers is notoriously unpleasant and carcinogenic.)

It is shown on the 1946 Air Ministry Plan as Building 38, Sub-Station, which obviously matches its features.

Demolition Dump 39

This very large mound contained all sorts of rubble, brick, stone, concrete, steel, obviously derived from demolition of airfield buildings. The mound was overgrown with vegetation, indicating that extensive demolition took place some years ago.

Radio House 42

This small, windowless brick building lay tucked away amongst trees in the SE corner of this quadrant. There was a concrete slab roof, and the entrance was protected by a blast wall. The roof overhung the walls by about 0.05 m, with a well-defined drip groove on the underside to prevent water running down the walls. Inside, two concrete beams set on edge ran the length of the building along the centre of the floor, with a wooden beam originally set on or between them, but now displaced. A large steel circuit frame was attached to this beam, with many of the circuit boards still attached, and large components such as capacitors still in place. The frame had partly fallen, displacing the wooden beam. The circuit boards were not of the printed circuit type, a much later post-war development, but of the same resin-fibre composite, with some terminals and component sockets ready-made. This equipment was obviously an electronic device of some kind, for example a radio or radar installation.

In fact the building is shown on the 1946 Air Ministry Plan as Building 55, Speech Broadcasting Building. ‘Broadcasting’ may suggest something more than ordinary w/t transmission. Did Findo Gask, with its large Polish contingent, ever provide some sort of Polish Language Radio Service to Polish forces in Britain and elsewhere?

North-west quadrant

The Farmhouse 61 and garden, and the Steading 63 and 64, form a compact group of mainly Victorian buildings, mainly in local red sandstone rubble. Some parts
of the Steading are in brick and asbestos cement, but these appear to be modern, and there are no obvious signs of wartime additions. The house is still inhabited. The steading is derelict and empty. Apart from the modern additions, the steading is to be retained and adapted, and is not substantially different from other steadings of similar age. The alignment of the steading has clearly defined the layout of the two wartime buildings in this area, the Corrugated Iron Hut 62, and the Control Tower 65.

Corrugated Iron Hut 62

This building was quite well preserved. It was built of corrugated iron sheet, and formed a half-cylinder. It was very similar to the famous Nissen Hut, but slightly larger than the most common type, and without the characteristic catslide dormers and monocoque structure. The end walls were of single-thickness brick in stretcher bond, reinforced with two buttresses inside and out. At the top of the wall was a coping one-and-a-half courses deep, following the semicircular profile of the building, into which the end frames of the roof were embedded. The W end wall had a small window with a concrete lintel, but at the E end a large vehicle entrance had been formed by cutting out the wall between the buttresses, and inserting a large wooden lintel. Because the building stood on sloping ground, it was raised on a brick plinth with a concrete floor, highest at the W end. In the W wall a damp-proof course was visible, and may be an early example of its use; dpc’s were not always standard in early 20th-century houses, so it is interesting to see one being used in a wartime utility building.

The roof itself was supported by 13 rolled steel inverted T-section frames or ribs, with apparently welded base plates bolted to the brick and concrete plinth. On the outside edge of these were bolted wooden purlins or stringers, to which the corrugated iron sheeting was nailed. The purlins were continuous across frames, not set between them in discrete lengths as might be expected. This probably gave the structure more longitudinal stiffness, and allowed air to circulate between the frames and the sheeting, which nowhere touch each other, reducing the risk of condensation, rot and corrosion at contact points. At the top of the roof was a double line of purlins for extra support against sagging. The sheeting was galvanised and painted blue-grey, except where some sheets had blown away, exposing the unpainted overlap. The sheeting was quite weathered, but the nails and rubber sealing washers looked too new to be wartime originals. The roof had been renewed or at least re-nailed at some point.

Adjacent to the Corrugated Iron Hut 62 was a small brick and concrete platform 62c, connected by a narrow brick and concrete path 62b to the hut. Brick steps led down from the platform to the passage, which was at the floor level of the hut. This was obviously an annexe to the hut, and probably led to a side entrance, removed when the hut was re-roofed, as it was no longer visible.

This complex is shown on the 1946 Air Ministry plan as Building 5, Crew Brief Block and Link Trainers. The Link Trainer (named after its American inventor Edwin Link) was a simple type of flight simulator, used in pilot training. The early models featured a ‘disembodied’ cockpit, to which were attached stubby wings and control surfaces for orientation purposes. The result looked remarkably like the toy aeroplanes provided in shopping centres for small children to ride in, but was very successful, and the company went on to become major manufacturers of modern electronic flight simulators.

Control Tower 65

This is by far the most interesting and important structure at Clathymore, and has been recorded and photographed in exhaustive detail. It is built of brick, with reinforced concrete floors and roof, and is cement rendered externally. Where exposed, the reinforcing bars are smooth, without the spiral ribs rolled onto modern bars. It has ground, first and second floors, and a flat roof accessible by a steel stair. Smith (1989, 73) describes it as an unusual 3-storey tower, inspired by the Fleet Air Arm standard tower, and notes (1983, 105) that similar towers were built at Heathrow, Dumfries and Gaydon.

Its most obvious feature is the Control Room (201) on the second floor, with its external gallery accessible from either side, and a ‘back office’ (202) behind, linked by a curious ‘serving hatch’. There is a smaller, similar, ‘alternative’ control room (101) on the floor below, in-
corporating a brick built cupboard with heavy steel door and a small external window. This could perhaps be a store for flares, which were sometimes used for signalling purposes. Not all light aircraft of the period had radio, and radio silence was sometimes required for security reasons.

The interior was very sparse, with concrete floors and bare brick walls, though plastered halfway up on the upper floors. However, many internal details survived, for example the brackets for electric heaters under the windows, especially in the control rooms 201 and 101, and coat hooks on the wall outside Control Room 201. Most notable were the blackout arrangements, boards secured by battens and clips on the ground floor and part of the first floor, and metal rods for curtains elsewhere. One small room (106) on the first floor had battens and clips to secure a board on the window, and still had traces of blackout curtain hanging from a batten nailed over the door to the adjacent Room 105. This could perhaps have been a photographic dark room.

Blackout arrangements were interestingly missing from the Control Rooms 201 and 101, presumably because these rooms were darkened internally at night, so that the occupants could observe aircraft movements outside. The ‘serving hatch’ may have been installed to provide communication between the darkened control room and an adjacent lighted room where maps and documents could be read.

The tower was very well provided with toilets on the ground and first floors (008, 009, 108, 109, 110, 112). Curiously, the first floor had two toilets adjacent, 108, 109, both unmistakably ‘gents’, perhaps indicating the separation of ‘officers’ and ‘other ranks’. The cubicles on the ground floor (008, 009) may have been the ‘ladies’.

Both control rooms (201, 101) show clear evidence of a change in design, in which the windows have been reduced in height and width. This is clearly visible in the exposed brickwork internally, and is confirmed externally by the oversize window sills reflecting the original large apertures. However the style and type of brickwork, and the continuity of the external render show that this change was made very early in the life of the tower, almost certainly during its original construction. Smaller windows would have made the control rooms slightly less vulnerable to blast damage, and marginally more comfortable. The control rooms face north, and the site is very exposed to westerly gales, so much so that on 9th February 2004, with all the glass missing, it was almost impossible to stand inside the Control Room 201 without falling over.

The most prominent feature on the roof was the large angle-iron frame, almost certainly used to display the two-digit magnetic heading of the runway in use. Smith (1989, 126) has a photograph of numbers being displayed in this way at another station. The number boards were naturally very large, to be easily legible by pilots out on dispersal. The task of changing the numbers must have been an exciting one on windy days.
Also on the roof was an octagonal mast base at the centre of the roof, with an obsolete round-pin electric socket nearby, presumably for signal lights. There was also a cast bronze or alloy base secured to the handrail in the NE corner of the tower. This could have been for something like a compass, but this is unlikely as the handrail was of tubular steel. A beacon or signal lamp is more likely, as an alternative to radio for communication with pilots on the ground. Some light aircraft might not have radios, radio silence might be imposed for security reasons, and damaged aircraft might have radios out of action. Even today, pilots are still taught a system of light signals for communication with control towers.

The south-east quadrant

This area is now almost empty except for one large ‘Frying Pan’ hard standing for aircraft, accessible from Track 58, a Blast Shelter 54 almost identical to Shelter 20 except for earth piled around it externally, and a few very overgrown hut bases. Some hut bases may have vanished altogether, as the area was very overgrown with long grass. There was also a small concrete slab feature 53a, which may be a modern septic tank cover. It looked recent, and does not appear on the Air Ministry plans.

The ‘Frying Pan 57’ is shown on the 1946 Air Ministry plan as Building 80, Blister Hangar (E.O.S.). A blister hangar was an open-ended corrugated-iron aircraft shelter, rather like a very large and slightly flattened Nissen Hut, but the abbreviation E.O.S. is not explained. The hangar has long vanished, leaving only the concrete floor and access track. A number of similar features are shown on the plan, now vanished.

A large circular concrete pad 56 appears on the 1946 Air Ministry plan as 99, Aircraft Hardstanding (Circular), and is shown linked to Perimeter Track 58. A number of similar features are also shown, but are now vanished.

Conclusions

The Clathymore survey was an interesting example of the amount of information that can be gathered fairly quickly by one person on a very large site of this type. Airfields like Hornchurch, Scampton, Tangmere and Takali (now Ta’ Qali) are as famous in their way as El Alamein or Arnhem. Findo Gask will be known only to local residents and aviation specialists, and like many other airfields across the UK is on the point of disappearing. Nevertheless its grim and utilitarian buildings contain hundreds of details of wartime life and technology. The building and manufacturing methods which evolved during the war had a profound influence on post-war technology and aesthetics.

Much of the information recorded here would have been common knowledge to the wartime generation, and is still fairly well-known to our own. But as memories fade and physical remains decay, the detail and texture of the wartime years will be increasingly confined to a few carefully preserved sites, and survey records like the present one.

Acknowledgements

Initial information was received from David Strachan. Further information, plans, and a copy of the BAE Systems report were received from Bruce Strachan of A & J Stephen (Builders) Ltd. The author would also like to thank Tony and Sal Freeth at Clathymore Farm for information.

References

Smith, D J 1983 Action Stations 7: Military Airfields of Scotland, the North-East and Northern Ireland, Cambridge.

Abstract
Survey of the derelict Findo Gask Airfield for A & J Stephen (Builders) Ltd recorded extensive WWII buildings, including a large T2 hangar, an unusual 3-storey control tower modified while under construction, blast shelters, various huts, a pyrotechnics store, an electrical sub-station, a radio broadcasting house, various hard standings, and the perimeter track. Buildings were constructed in steel, colliery bricks from various Fife sources, and in cellular concrete, a wartime austerity material. Some buildings used metal windows to metric specifications. The station was used by various training, operational and maintenance units, and by Polish forces.

Keywords
aviation
military architecture
Polish forces
RAF
WWII